An Investigation of Modern Physics by Brian Williams
RSS icon Home icon
  • Physics in the News – Nuclear Fusion

    Posted on November 16th, 2016 Brian No comments

    Where does the idea of nuclear fusion come from?

    Briefly, it was an hypothesis of Sir Arthur Eddington based on Einstein’s silly formula E = m x c².  Eddington’s argument was that “if c² is a constant, then the above formula would indicate that each kilogram (mass) of any material would contain the same energy as a mass of 1 kilogram travelling at a speed of 9,000,000,000 kilometres/second. ( E = 1kg x 300,000 x 300,000)

    This idea is typical of the lack of reality in modern physics.

    Nuclear fusion is an attempt to unleash this hypothetical energy.

    Now E in the formulae E = m x v²  ( or even Einstein’s E = m x c²) refers to Kinetic Energy which means the energy required to bring a moving object to rest. If the object is not moving then its kinetic energy is zero.

    A 1 kilogram(mass) piece of coal or uranium or cheese resting on a bench has no kinetic energy. The coal, uranium and cheese will each have different amounts of ‘energy’ such as calorific or thermal but no kinetic energy, so the use of  of the formulae

    Kinetic Energy = mass x velocity², is completely invalid.

    Coal and uranium both contain potential energy in the form of atomic stress. I don’t think that cheese does.

    Author – Brian Williams.



  • Physics in the News- Gravity Waves. The Mechanics.

    Posted on November 26th, 2015 Brian No comments

    What is a gravity wave? Stand on the sea shore and watch the tide come in. You are watching the result of a gravity wave. This gravity wave, twice daily(roughly) not only moves the seas but also moves the land.

    The force of the moon’s gravity creates a moving force field (gravitational wave) that travels around the Earth. This wave is also affected by the gravitational force of the sun, the planets and, to an exceedingly small amount, all other stars and planets in the universe.

    All bodies having mass and moving relative to another mass create a gravity wave.

    Note that bodies that are in geosynchronous mutual orbits do not create a moving force field and therefore do not create a gravitational wave because the bodies do not move relative to each other.

    Yes, I do understand that the current proposed experiments are an attempt by the physics establishment to force gravity into the ‘Wave Theory of Everything’ syndrome. Gravity is a force, not a wave. Light is particle transmission, not a wave.

    However, they are attempting to use the same experimental set-up as used in the Michelson-Morley experiment, which is full of errors, both logical and mathematical.

    In fact, the results obtained in the Michelson – Morley experiment actually proves that light does not travel at a constant velocity and that light is not a wave.

    Also, the experiments are set up on Earth and therefore subject to massive gravitational forces relative to the forces that they are attempting to measure.


    Latest World Headlines, gravity waves found, a few computer created graphics, two prints from graphs, but no evidence presented to allow the claims to be checked out.

    Author – Brian Williams

    See also;


    The Full Mathematics of the Michelson-Morley Experiment-Part-1

    Liquid Balance On Saturn Satellite Mimas.

    Understanding Waves


  • More on the Higgs Bosun

    Posted on August 4th, 2014 Brian No comments

    From Wikipedia, the free encyclopedia. (I think).

    I apologize for the lack of authorship information on this post. I was looking for the clearest text on this subject to use for critical appraisal and I searched through many articles before finding this text. Unfortunately I omitted to include the necessary information. The Photo is definitely from Wikipedia.

    The imported text is shown in Blue italics, my comments are shown in Red

    A computer-generated image of a Higgs interaction

    The Higgs boson (or Higgs particle) is a particle that gives mass to other particles. “

    What do they actually mean by this statement? To detect any particle, that particle must have mass already. All particles have mass, they don’t need another particle. This whole argument stems from the fact that physicists don’t understand what mass is, they don’t understand what gravity is, they don’t understand what electricity is, they don’t understand what light is and , in general, they don’t seem to understand anything about physics. See “What Gravity is and What Causes It”, which gives a preliminary insight into both mass and gravity.


    Peter Higgs was the first person to think of it, and the particle was found in March 2013. It is part of the Standard Model in physics, which means it is found everywhere. It is one of the 17 particles in the Standard Model. P

    The Higgs particle is a boson. Bosons are particles responsible for all physical forces except gravity. “

    There are only two types of atomic force: A force of attraction and a force of repulsion.

    The force of attraction is the nuclear force that includes both gravity and magnetism.

    The force of repulsion is that between electrons.

    Note; The repulsion force between electrons only operates between electrons, it does not operate between nuclei and electrons, there is a mutual attraction.


    Other bosons are the photon, the W and Z bosons, and the gluon. Scientists do not yet know how to combine gravity with the Standard Model.

    There are no such things as photons. Photons are relatively slow speed electrons.

    It is very difficult to detect the Higgs boson with the equipment and technology we have now. These particles are believed to exist for less than a septillionth of a second. Because the Higgs boson has so much mass (compared to other particles), it takes a lot of energy to create one. The Large Hadron Collider at CERN is the equipment scientists used to find it. The collider has enough energy that it is able to make Higgs bosons. When you smash particles together, there is a small chance a Higgs Boson will appear, so the Large Hadron Collider smashed lots of particles together to find it.”

    See “How physicist ‘find’ their particles.”

    Higgs bosons obey the conservation of energy law, which states that no energy is created or destroyed, but instead it is transferred. First, the energy starts out in the gauge boson that interacts with the Higgs field. This energy is in the form of kinetic energy as movement. After the gauge boson interacts with the Higgs field, it is slowed down. This slowing reduces the amount of kinetic energy in the gauge boson. However, this energy is not destroyed. Instead, the energy is converted into mass-energy, which is normal mass that comes from energy.

    This is based (as stated below) on Einstein’s incompetent mathematics relating to the Mickelson-Morley experiment. Because of the complete lack of understanding of mechanics by the physics establishment, (this was a mechanical experiment, subject to the universal laws of mechanics and the rules of mathematics), they did not understand the results of the experiment, which was not what they expected. The results obtained were exactly in accordance with the laws of mechanics and the rules of mathematics. The physics estrablishment refused to accept this fact. Einstein fiddled the mathematics to suit the result the physicists expected and wanted.


    The mass created is what we call a Higgs boson. The amount of mass created comes from Einstein‘s famous equation E=mc2, which states that mass is equal to a large amount of energy (i.e. 1 kg of mass is equivalent to almost 90 quadrillion joules of energy—the same amount of energy used by the entire world in roughly an hour and a quarter in 2008). Since the amount of mass-energy created by the Higgs field is equal to the amount of kinetic-energy that the gauge boson lost by being slowed, energy is conserved.”

    Note; The Michelson-Morley experiment was expected (By the physicists) to show a time difference between two light beams travelling different paths. No time differences were found. The physicists therefore decided that light must travel at a constant speed and therefore the speed of light must be a constant. E=mc2 is derived from the standard mechanics formula for moving bodies E = mv 2,

    Unfortunately, by making c2 into a constant and using in all sorts of silly unproven formula they come up with daft statements like “1 kilo of mass is the equivalent of 90 quadrillion joules of energy”. IF the 1kilo was travelling at 300,000 x the speed of light its energy due to its MOMENTUM would probably light more than a few houses. The energy would be entirely due to its velocity. The energy of the 1 kilo, whilst sat on your desk, would depend on what the material was.

    Note;  Mass (m) is a real item (Primary Quantity). Velocity (v) is a real item (Secondary Quantity, composed of two Primary Quantities, distance and time.).    However, v2 is an irrational quantity i.e. it has no reality, it is only a mathematical concept. You cannot (in reality) multiply time x time.  A real quantity times an irrational quantity =  (E) an irrational quantity.

    Like most mathematics you must consider the logic of what you are doing. Energy is a mathematical concept, momentum is an actuality. (See “Understanding Momentum”).

    I have never found a full study on the the mechanics and mathematics of the Michelson- Morley experiment from the physics establishment. For this  reason my first book concentrated on these matters.

    Author – Brian Williams

  • What happened to the Antimatter Particles?

    Posted on May 16th, 2013 Brian No comments

    The short answer is “Nothing”. Antimatter is a figment of the imaginations of physicists.

    Therefore there are not nor has there ever been such things as “Antimatter Particles”.

    The Hypothesis of antimatter derived from the misunderstanding (by physicists) of the mechanics of cloud chamber experiments.

    As explained in my post “How physicists  ‘Find’ their particles”,  the physicists are not actually seeing particles, they are seeing the tracks left by the passage of particles (or atoms or molecules).

    If a particle (or atom or molecule) is not moving, there are no tracks. Unfortunately. when a track stops for some reason the physicists argue that this means that the particle (or atom or molecule) has been annihilated.

    When you consider that tracks are being left in a substance composed of thousands of billions of atoms and molecules it is not surprising that particles get stopped. However, many of these “disappearances” are claimed to be annihilations caused by impact with “antimatter particles”.

    Author; Brian Williams

  • Physics in the News – Higgs Boson

    Posted on December 13th, 2011 Brian No comments

    Note;  A Hypothesis can be any idea that someone dreams up. It does not require any proof or logical basis.


    See also “How Physicists “find” their Particles”, which gives my prediction on 25th June 2011 and why. If you really want to understand about the problem with the Higgs Boson you need to understand how physicists ‘find’ them and all their other ‘particles’.


    Extract from above post. Posted on 25th June 2011

    “Tevatron teams clash over new physics.”

    All the above comments also apply to the Tevatron accelerator in the USA, currently in the news. I suspect that they are struggling to find a magic particle to enable them to keep the unit open. (It is due to close shortly.)


    “The rare beauty of modern physics is that it is completely untainted by reality.” Brian Williams


    Q&A: The Higgs boson

    Changes in Red are by Brian

    The Higgs is a theorised [Hypothesized] sub-atomic particle – one of the “fundamental” ones that are the most basic building blocks of the Universe. Unlike atoms, these fundamental particles are not thought to be made up of anything else. The Higgs is so important because it helps the current best-guess theory [Hypothesis]of the Universe – the Standard Model – explain how other particles obtain mass. The theory[Hypothesis] has it that as the Universe cooled after the Big Bang, [another hypothesis]an invisible force known as the Higgs field formed together with its associated boson particle. This field imparts mass to the other fundamental particles.

    What’s so important about mass?

    Mass [Inertia] is the resistance of an object to changes in its velocity. Without this Higgs field, the Universe would be a very different place – particles would zip through the cosmos at the speed of light. The way this field confers mass on other particles has previously been likened to the way water in a swimming pool makes it harder for you to move when you try to wade through it. The Higgs field permeates the Universe the way water fills a pool. [Mass has nothing to do with ‘fields’, ‘charges’ or swimming pools.] This paragraph is complete waffle. A magnetic field could reduce the speed of an object, but it would not affect its inertia or its mass.

    How do we know the Higgs exists?

    Strictly speaking, we do not, and that is what is so exciting about the announcements to be made at the Large Hadron Collider – the giant experiment that was built in part to hunt for the Higgs. The particle was first proposed in 1964 by six physicists, including the Edinburgh-based theoretician Peter Higgs, as an explanation for the property of mass.

    The Standard Model is an instruction booklet for how the cosmos works – a framework that explains how the different particles and forces interact. But one chapter of the booklet remains unfinished – unlike the other fundamental particles, the Higgs has never been observed by experiments. [ What they are saying is that if they cannot find the mythical Higgs Boson, they can spend billions of £s attempting to find some other mythical particle.]

    How do scientists search for the Higgs boson?

    Ironically, the Standard Model does not predict an exact mass for the Higgs itself. Particle accelerators like the LHC are used to systematically search for the particle over a range of masses where it could plausibly be. The LHC works by smashing two beams of protons [Protons are another type of mythical particle.]together at close to light speed, generating other particles. It is not the first machine to hunt for the boson. The LEP machine, which ran at Cern from 1989-2000, ruled out the Higgs up to a mass of 114 gigaelectronvolts (GeV; thanks to the equivalence of mass and energy laid out in the equation E=mc2, [The seriously incompetent formulae from Einstein.] particle physicists talk about the energy in accelerators’ beams and the masses of the particles they look for in the same terms). The US Tevatron accelerator searched for the particle above this mass range before it was switched off this year. These data are still being analysed, and could yet be important in helping confirm or rule out the boson, say physicists. The LHC, as the most powerful particle accelerator ever built, is just the most high-profile of the experiments that could shed light on the Higgs hunt. [Note: The constant search for mythical particles is mainly due to Einstein’s faulty mathematics]

    When will we know if we have found it?

    The Higgs boson is unstable; if produced among the billions of collisions at the LHC, it will quickly decay into more stable, lower-mass particles. Physicists have to infer the production of a Higgs using these decay products. Hints of the Higgs would look like a little spike or “bump” in physicists’ graphs. Results at the LHC and elsewhere carry a mark of approval in the form of statistical certainty – the degree to which observations are likely to be due to real effects, rather than statistical flukes that crop up in billions of collisions. A standard of “five sigma” is required to turn such hints into a discovery. This means there is less than a one in a million chance that the bump is a statistical fluke. It is almost certain that scientists at the LHC will be able to announce results at this level.

    What if we don’t find it?

    Most professional physicists would say that finding the Higgs in precisely the form that [the] theory [Hypothesis] predicts would actually be a disappointment. Large-scale projects such as the LHC are built with the aim of expanding knowledge, and confirming the existence of the Higgs right where we expect it – while it would be a triumph for our understanding of physics – would be far less exciting than not finding it. If future studies definitively confirm that the Higgs does not exist, much if not all of the Standard Model would have to be rewritten. That in turn would launch new lines of enquiry that would almost certainly revolutionise our understanding of the Universe, in much the same way as something missing in physics a century ago led to the development of the revolutionary ideas of quantum mechanics.